## prior distribution of correlation matrix of latent factors
##
## maximum correlation (in absolute value):
##
## mean median sd min max
## nu0 = 3, S0 = 1 0.499 0.498 0.289 0 1.000
## nu0 = 4, S0 = 1 0.425 0.404 0.264 0 1.000
## nu0 = 5, S0 = 1 0.376 0.349 0.244 0 0.998
## nu0 = 6, S0 = 1 0.339 0.309 0.227 0 0.994
## nu0 = 7, S0 = 1 0.312 0.280 0.213 0 0.990
## nu0 = 8, S0 = 1 0.291 0.260 0.201 0 0.970
##
## 5% 10% 25% 75% 90% 95%
## nu0 = 3, S0 = 1 0.050 0.099 0.250 0.750 0.900 0.951
## nu0 = 4, S0 = 1 0.040 0.078 0.198 0.633 0.804 0.877
## nu0 = 5, S0 = 1 0.034 0.068 0.169 0.559 0.731 0.813
## nu0 = 6, S0 = 1 0.029 0.058 0.148 0.502 0.669 0.753
## nu0 = 7, S0 = 1 0.027 0.054 0.134 0.461 0.622 0.708
## nu0 = 8, S0 = 1 0.024 0.049 0.124 0.428 0.582 0.668
##
## minimum eigenvalue of correlation matrix:
##
## mean median sd min max
## nu0 = 3, S0 = 1 0.501 0.502 0.289 0.000 1
## nu0 = 4, S0 = 1 0.575 0.596 0.264 0.000 1
## nu0 = 5, S0 = 1 0.624 0.651 0.244 0.002 1
## nu0 = 6, S0 = 1 0.661 0.691 0.227 0.006 1
## nu0 = 7, S0 = 1 0.688 0.720 0.213 0.010 1
## nu0 = 8, S0 = 1 0.709 0.740 0.201 0.030 1
##
## 5% 10% 25% 75% 90% 95%
## nu0 = 3, S0 = 1 0.049 0.100 0.250 0.750 0.901 0.950
## nu0 = 4, S0 = 1 0.123 0.196 0.367 0.802 0.922 0.960
## nu0 = 5, S0 = 1 0.187 0.269 0.441 0.831 0.932 0.966
## nu0 = 6, S0 = 1 0.247 0.331 0.498 0.852 0.942 0.971
## nu0 = 7, S0 = 1 0.292 0.378 0.539 0.866 0.946 0.973
## nu0 = 8, S0 = 1 0.332 0.418 0.572 0.876 0.951 0.976
## prior probabilities of numbers of factors:
## 1 2 acc
## kappa = 0.1 0.921 0.079 0.899
## kappa = 0.2 0.849 0.151 0.832
## kappa = 0.3 0.784 0.216 0.786
## kappa = 0.4 0.727 0.273 0.753
## kappa = 0.5 0.678 0.322 0.726
## kappa = 0.6 0.632 0.368 0.709
## kappa = 0.7 0.594 0.406 0.694
## kappa = 0.8 0.559 0.441 0.683
## kappa = 0.9 0.528 0.472 0.674
## kappa = 1 0.500 0.500 0.666
Copyright:
Benedikt Philipp Kleer, 2022 (Online-Appendix zur Promotion, eingereicht am 14. September 2022, Fachbereich 03, Justus-Liebig-Universität Gießen).