Simulation \(\nu_0\)

## prior distribution of correlation matrix of latent factors
## 
## maximum correlation (in absolute value):
## 
##                     mean   median      sd     min     max
## nu0 = 5, S0 = 1    0.780    0.810   0.160   0.097   1.000
## nu0 = 6, S0 = 1    0.708    0.724   0.165   0.081   1.000
## nu0 = 7, S0 = 1    0.652    0.658   0.164   0.078   0.998
## nu0 = 8, S0 = 1    0.607    0.609   0.160   0.095   0.999
## nu0 = 9, S0 = 1    0.570    0.570   0.156   0.060   0.992
## nu0 = 10, S0 = 1   0.541    0.537   0.151   0.068   0.975
## nu0 = 11, S0 = 1   0.513    0.509   0.146   0.071   0.975
## nu0 = 12, S0 = 1   0.490    0.484   0.142   0.066   0.949
## nu0 = 13, S0 = 1   0.471    0.464   0.138   0.043   0.947
## nu0 = 14, S0 = 1   0.453    0.447   0.134   0.058   0.945
## 
##                       5%     10%     25%     75%     90%     95%
## nu0 = 5, S0 = 1    0.476   0.548   0.675   0.912   0.966   0.983
## nu0 = 6, S0 = 1    0.414   0.477   0.592   0.840   0.917   0.949
## nu0 = 7, S0 = 1    0.371   0.429   0.535   0.777   0.866   0.908
## nu0 = 8, S0 = 1    0.339   0.393   0.491   0.726   0.820   0.866
## nu0 = 9, S0 = 1    0.315   0.366   0.456   0.684   0.780   0.829
## nu0 = 10, S0 = 1   0.297   0.344   0.431   0.648   0.744   0.795
## nu0 = 11, S0 = 1   0.280   0.325   0.407   0.616   0.710   0.761
## nu0 = 12, S0 = 1   0.265   0.309   0.387   0.589   0.682   0.734
## nu0 = 13, S0 = 1   0.253   0.295   0.371   0.566   0.658   0.709
## nu0 = 14, S0 = 1   0.243   0.282   0.356   0.544   0.634   0.684
## 
## minimum eigenvalue of correlation matrix:
## 
##                     mean   median      sd     min     max
## nu0 = 5, S0 = 1    0.152    0.122   0.124   0.000   0.846
## nu0 = 6, S0 = 1    0.213    0.189   0.136   0.000   0.878
## nu0 = 7, S0 = 1    0.264    0.246   0.140   0.001   0.901
## nu0 = 8, S0 = 1    0.306    0.292   0.141   0.000   0.880
## nu0 = 9, S0 = 1    0.341    0.330   0.141   0.006   0.905
## nu0 = 10, S0 = 1   0.370    0.362   0.139   0.019   0.912
## nu0 = 11, S0 = 1   0.398    0.392   0.136   0.019   0.923
## nu0 = 12, S0 = 1   0.422    0.416   0.135   0.040   0.931
## nu0 = 13, S0 = 1   0.442    0.438   0.132   0.028   0.926
## nu0 = 14, S0 = 1   0.461    0.457   0.130   0.042   0.940
## 
##                       5%     10%     25%     75%     90%     95%
## nu0 = 5, S0 = 1    0.011   0.021   0.055   0.218   0.328   0.399
## nu0 = 6, S0 = 1    0.035   0.056   0.107   0.294   0.403   0.471
## nu0 = 7, S0 = 1    0.066   0.095   0.157   0.353   0.458   0.522
## nu0 = 8, S0 = 1    0.099   0.132   0.200   0.398   0.500   0.561
## nu0 = 9, S0 = 1    0.128   0.164   0.236   0.434   0.533   0.591
## nu0 = 10, S0 = 1   0.156   0.196   0.269   0.463   0.557   0.613
## nu0 = 11, S0 = 1   0.184   0.225   0.299   0.490   0.581   0.634
## nu0 = 12, S0 = 1   0.210   0.250   0.324   0.514   0.601   0.653
## nu0 = 13, S0 = 1   0.230   0.272   0.347   0.532   0.618   0.669
## nu0 = 14, S0 = 1   0.253   0.294   0.368   0.550   0.633   0.682

Simulation \(\kappa_0\)

## prior probabilities of numbers of factors:
##                   1       2       3       4     acc
## kappa = 0.1   0.637   0.334   0.029   0.000   0.764
## kappa = 0.2   0.426   0.485   0.088   0.002   0.637
## kappa = 0.3   0.296   0.545   0.154   0.005   0.560
## kappa = 0.4   0.212   0.560   0.219   0.009   0.508
## kappa = 0.5   0.157   0.552   0.277   0.014   0.471
## kappa = 0.6   0.119   0.532   0.330   0.020   0.444
## kappa = 0.7   0.092   0.507   0.374   0.027   0.423
## kappa = 0.8   0.073   0.480   0.413   0.034   0.406
## kappa = 0.9   0.058   0.454   0.447   0.041   0.392
## kappa = 1     0.047   0.428   0.477   0.047   0.381



Copyright: Creative Commons License
Benedikt Philipp Kleer, 2022 (Online-Appendix zur Promotion, eingereicht am 14. September 2022, Fachbereich 03, Justus-Liebig-Universität Gießen).