2004

\(\nu_0 = 3\), \(\kappa_0 = 0.3\)

Modellübersicht

## BEFA - Bayesian Exploratory Factor Analysis
## Summary of posterior results
## 
## Maximum number of factors (Kmax) = 2 
## Identification restriction (Nid) = 2 
## 
## MCMC iterations = 60000 
## burn-in period  = 6000 
## 
## Metropolis-Hastings acceptance rate = 1
## 
## Posterior frequency of number of latent factors:
##   K =  2     100.00%
## 
## -----------------------------------------------------------------
## Model parameters
## 
## Factor loadings:
## 
##                 dedic   prob    mean      sd   [ 95%   hpd ]
## alpha:trstplt       1      1   0.902   0.013   0.877   0.928
## alpha:trstprt       1      1   0.883   0.013   0.857   0.909
## alpha:trstprl       1      1   0.811   0.013   0.787   0.836
## alpha:trstplc       2      1   0.695   0.013   0.670   0.720
## alpha:trstlgl       2      1   0.817   0.013   0.792   0.843
## 
## Idiosyncratic variances:
## 
##                  mean      sd   [ 95%   hpd ]
## sigma:trstplt   0.335   0.011   0.314   0.357
## sigma:trstprt   0.379   0.011   0.357   0.402
## sigma:trstprl   0.445   0.011   0.424   0.467
## sigma:trstplc   0.570   0.013   0.545   0.595
## sigma:trstlgl   0.450   0.012   0.427   0.474
## 
## Factor correlation matrix:
## 
##          mean      sd   [ 95%   hpd ]
## R:1:2   0.814   0.009   0.796   0.832

Trace-Plot

Trace-Plot: BEFA 2004

Autokorrelation-Plot

Autokorrelation-Plot: BEFA 2004

\(\nu_0 = 3\), \(\kappa_0 = 0.5\)

Modellübersicht

## BEFA - Bayesian Exploratory Factor Analysis
## Summary of posterior results
## 
## Maximum number of factors (Kmax) = 2 
## Identification restriction (Nid) = 2 
## 
## MCMC iterations = 60000 
## burn-in period  = 6000 
## 
## Metropolis-Hastings acceptance rate = 1
## 
## Posterior frequency of number of latent factors:
##   K =  2     100.00%
## 
## -----------------------------------------------------------------
## Model parameters
## 
## Factor loadings:
## 
##                 dedic   prob    mean      sd   [ 95%   hpd ]
## alpha:trstplt       1      1   0.902   0.013   0.877   0.928
## alpha:trstprt       1      1   0.883   0.013   0.858   0.909
## alpha:trstprl       1      1   0.811   0.012   0.786   0.835
## alpha:trstplc       2      1   0.695   0.013   0.671   0.721
## alpha:trstlgl       2      1   0.817   0.013   0.791   0.842
## 
## Idiosyncratic variances:
## 
##                  mean      sd   [ 95%   hpd ]
## sigma:trstplt   0.335   0.011   0.313   0.356
## sigma:trstprt   0.379   0.011   0.357   0.402
## sigma:trstprl   0.445   0.011   0.424   0.466
## sigma:trstplc   0.570   0.013   0.545   0.595
## sigma:trstlgl   0.450   0.012   0.427   0.474
## 
## Factor correlation matrix:
## 
##          mean      sd   [ 95%   hpd ]
## R:1:2   0.814   0.009   0.796   0.832

Trace-Plot

Trace-Plot: BEFA 2004

Autokorrelation-Plot

Autokorrelation-Plot: BEFA 2004

\(\nu_0 = 3\), \(\kappa_0 = 0.7\)

Modellübersicht

## BEFA - Bayesian Exploratory Factor Analysis
## Summary of posterior results
## 
## Maximum number of factors (Kmax) = 2 
## Identification restriction (Nid) = 2 
## 
## MCMC iterations = 50000 
## burn-in period  = 5000 
## 
## Metropolis-Hastings acceptance rate = 1
## 
## Posterior frequency of number of latent factors:
##   K =  2     100.00%
## 
## -----------------------------------------------------------------
## Model parameters
## 
## Factor loadings:
## 
##                 dedic   prob    mean      sd   [ 95%   hpd ]
## alpha:trstplt       1      1   0.902   0.013   0.878   0.929
## alpha:trstprt       1      1   0.883   0.013   0.857   0.909
## alpha:trstprl       1      1   0.811   0.013   0.787   0.836
## alpha:trstplc       2      1   0.696   0.013   0.670   0.720
## alpha:trstlgl       2      1   0.817   0.013   0.791   0.842
## 
## Idiosyncratic variances:
## 
##                  mean      sd   [ 95%   hpd ]
## sigma:trstplt   0.335   0.011   0.313   0.356
## sigma:trstprt   0.379   0.011   0.357   0.401
## sigma:trstprl   0.446   0.011   0.424   0.467
## sigma:trstplc   0.570   0.013   0.546   0.596
## sigma:trstlgl   0.450   0.012   0.427   0.474
## 
## Factor correlation matrix:
## 
##          mean      sd   [ 95%   hpd ]
## R:1:2   0.814   0.009   0.796   0.832

Trace-Plot

Trace-Plot: BEFA 2004

Autokorrelation-Plot

Autokorrelation-Plot: BEFA 2004

\(\nu_0 = 3\), \(\kappa_0 = 0.9\)

Modellübersicht

## BEFA - Bayesian Exploratory Factor Analysis
## Summary of posterior results
## 
## Maximum number of factors (Kmax) = 2 
## Identification restriction (Nid) = 2 
## 
## MCMC iterations = 90000 
## burn-in period  = 9000 
## 
## Metropolis-Hastings acceptance rate = 1
## 
## Posterior frequency of number of latent factors:
##   K =  2     100.00%
## 
## -----------------------------------------------------------------
## Model parameters
## 
## Factor loadings:
## 
##                 dedic   prob    mean      sd   [ 95%   hpd ]
## alpha:trstplt       1      1   0.902   0.013   0.877   0.928
## alpha:trstprt       1      1   0.883   0.013   0.857   0.909
## alpha:trstprl       1      1   0.811   0.012   0.787   0.836
## alpha:trstplc       2      1   0.695   0.013   0.670   0.720
## alpha:trstlgl       2      1   0.817   0.013   0.791   0.842
## 
## Idiosyncratic variances:
## 
##                  mean      sd   [ 95%   hpd ]
## sigma:trstplt   0.335   0.011   0.314   0.357
## sigma:trstprt   0.379   0.011   0.357   0.402
## sigma:trstprl   0.445   0.011   0.424   0.467
## sigma:trstplc   0.570   0.013   0.545   0.595
## sigma:trstlgl   0.450   0.012   0.427   0.474
## 
## Factor correlation matrix:
## 
##          mean      sd   [ 95%   hpd ]
## R:1:2   0.814   0.009   0.796   0.832

Trace-Plot

Trace-Plot: BEFA 2004

Autokorrelation-Plot

Autokorrelation-Plot: BEFA 2004




Copyright: Creative Commons License
Benedikt Philipp Kleer, 2022 (Online-Appendix zur Promotion, eingereicht am 14. September 2022, Fachbereich 03, Justus-Liebig-Universität Gießen).