Polit. Vertrauen

2004

## Call: 
## strel(data = trust04, estimates = "alpha", interval = 0.95, n.iter = 5000, 
##     n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.84150       0.83547       0.84765
## freq_alpha    0.83984       0.83372       0.84577
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.84150       0.83547       0.84765
## x1         0.84699       0.84063       0.85323
## x2         0.79307       0.78420       0.80175
## x3         0.77046       0.76165       0.77954
## x4         0.78682       0.77854       0.79506
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.83984
## x1       0.84540
## x2       0.79122
## x3       0.76738
## x4       0.78533

Trace-Plot

Autokorrelation-Plot

2012

## Call: 
## strel(data = trust12, estimates = "alpha", interval = 0.95, n.iter = 5000, 
##     n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.87278       0.86795       0.87761
## freq_alpha    0.87257       0.86764       0.87735
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.87278       0.86795       0.87761
## x1         0.88254       0.87769       0.88730
## x2         0.82853       0.82130       0.83555
## x3         0.81363       0.80659       0.82086
## x4         0.82190       0.81498       0.82875
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.87257
## x1       0.88271
## x2       0.82769
## x3       0.81358
## x4       0.82159

Trace-Plot

Autokorrelation-Plot

2018

## Call: 
## strel(data = trust18, estimates = "alpha", interval = 0.95, n.iter = 5000, 
##     n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.86490       0.85955       0.87076
## freq_alpha    0.86543       0.85980       0.87086
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.86490       0.85955       0.87076
## x1         0.86508       0.85925       0.87130
## x2         0.82390       0.81585       0.83161
## x3         0.80383       0.79540       0.81187
## x4         0.81472       0.80696       0.82261
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.86543
## x1       0.86589
## x2       0.82439
## x3       0.80429
## x4       0.81546

Trace-Plot

Autokorrelation-Plot

Outcome

2012

## Call: 
## strel(data = outcome12, estimates = "alpha", interval = 0.95, 
##     n.iter = 5000, n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.71288       0.70158       0.72414
## freq_alpha    0.71327       0.70202       0.72416
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.71288       0.70158       0.72414
## x1         0.73411       0.72242       0.74641
## x2         0.55441       0.53442       0.57483
## x3         0.56270       0.54370       0.58313
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.71327
## x1       0.73505
## x2       0.55717
## x3       0.56033

Trace-Plot

Autokorrelation-Plot

2018

## Call: 
## strel(data = outcome18, estimates = "alpha", interval = 0.95, 
##     n.iter = 5000, n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.75422       0.74376       0.76430
## freq_alpha    0.75202       0.74159       0.76209
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.75422       0.74376       0.76430
## x1         0.69915       0.68485       0.71436
## x2         0.65483       0.63731       0.67144
## x3         0.65771       0.64123       0.67397
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.75202
## x1       0.69644
## x2       0.64957
## x3       0.65758

Trace-Plot

Autokorrelation-Plot

Demokratisches Verständnis

2012

## Call: 
## strel(data = demun12, estimates = "alpha", interval = 0.95, n.iter = 5000, 
##     n.burnin = 500, thin = 1, n.chains = 3, item.dropped = TRUE)
## 
## Results: 
##             point est  95% CI lower  95% CI upper
## Bayes_alpha   0.89794       0.89451       0.90146
## freq_alpha    0.89823       0.89476       0.90160
## 
## Bayesian point est is the posterior mean 
## Missing data handling: using pairwise complete cases
## 
## Bayesian alpha if item dropped: 
##          point est  95% CI lower  95% CI upper
## original   0.89794       0.89451       0.90146
## x1         0.88702       0.88307       0.89092
## x2         0.89215       0.88844       0.89585
## x3         0.88432       0.88021       0.88817
## x4         0.88272       0.87863       0.88673
## x5         0.88727       0.88350       0.89132
## x6         0.88022       0.87605       0.88432
## x7         0.88566       0.88173       0.88957
## x8         0.88603       0.88217       0.88990
## x9         0.89412       0.89058       0.89788
## 
## Frequentist point estimate if item dropped: 
##            alpha
## original 0.89823
## x1       0.88736
## x2       0.89236
## x3       0.88477
## x4       0.88342
## x5       0.88772
## x6       0.88062
## x7       0.88582
## x8       0.88588
## x9       0.89447

Trace-Plot

Autokorrelation-Plot




Copyright: Creative Commons License
Benedikt Philipp Kleer, 2022 (Online-Appendix zur Promotion, eingereicht am 14. September 2022, Fachbereich 03, Justus-Liebig-Universität Gießen).