Ordinales Modell

Modellübersicht

## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta
## above 0.99 may help. See http://mc-stan.org/misc/warnings.html#divergent-
## transitions-after-warmup
##  Family: cumulative 
##   Links: mu = probit; disc = log 
## Formula: trust ~ 1 + (1 | nuts2) 
##          disc ~ 1 + (1 | nuts2)
##    Data: cee04 (Number of observations: 7098) 
##   Draws: 3 chains, each with iter = 84000; warmup = 6000; thin = 6;
##          total post-warmup draws = 39000
## 
## Group-Level Effects: 
## ~nuts2 (Number of levels: 26) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.43      0.14     0.21     0.76 1.00    23506    31883
## sd(disc_Intercept)     0.06      0.02     0.03     0.09 1.00    36297    37548
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept[1]      -2.82      0.80    -4.64    -1.52 1.00    22716    30084
## Intercept[2]      -1.64      0.47    -2.71    -0.87 1.00    22733    31154
## Intercept[3]      -0.61      0.20    -1.06    -0.30 1.00    23315    31850
## Intercept[4]       0.32      0.13     0.12     0.62 1.00    23579    31441
## Intercept[5]       1.15      0.33     0.61     1.91 1.00    22164    30074
## Intercept[6]       2.14      0.61     1.16     3.52 1.00    22234    29004
## Intercept[7]       3.08      0.87     1.66     5.05 1.00    22300    28858
## Intercept[8]       3.93      1.11     2.12     6.44 1.00    22374    28989
## Intercept[9]       4.86      1.37     2.63     7.95 1.00    22368    29434
## Intercept[10]      5.32      1.50     2.88     8.72 1.00    22397    29659
## disc_Intercept    -0.55      0.28    -1.08     0.03 1.00    22469    29461
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Trace-Plots

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Autokorrelation-Plots

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Posterior-Verteilung

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Ordinales Nullmodell

Modellübersicht

##  Family: cumulative 
##   Links: mu = probit; disc = log 
## Formula: trust ~ 1 
##          disc ~ 1
##    Data: cee04 (Number of observations: 7098) 
##   Draws: 3 chains, each with iter = 84000; warmup = 6000; thin = 6;
##          total post-warmup draws = 39000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept[1]      -2.57      0.74    -4.24    -1.37 1.00    17486    21128
## Intercept[2]      -1.48      0.43    -2.44    -0.78 1.00    17474    21103
## Intercept[3]      -0.52      0.15    -0.87    -0.28 1.00    17557    21486
## Intercept[4]       0.33      0.10     0.17     0.56 1.00    18609    23150
## Intercept[5]       1.09      0.31     0.58     1.80 1.00    17618    21290
## Intercept[6]       2.00      0.58     1.06     3.30 1.00    17538    20787
## Intercept[7]       2.85      0.82     1.52     4.70 1.00    17513    20552
## Intercept[8]       3.62      1.04     1.93     5.97 1.00    17483    20856
## Intercept[9]       4.46      1.28     2.37     7.35 1.00    17502    21163
## Intercept[10]      4.89      1.41     2.60     8.06 1.00    17486    20637
## disc_Intercept    -0.49      0.29    -1.03     0.10 1.00    17491    21034
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Trace-Plots

Trace-Plot

Trace-Plot

Trace-Plot

Autokorrelation-Plots

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Posterior-Verteilung

Posterior-Plot

Posterior-Plot

Metrisches Modell

Modellübersicht

##  Family: student 
##   Links: mu = identity; sigma = log; nu = identity 
## Formula: trust ~ 1 + (1 | nuts2) 
##          sigma ~ 1 + (1 | nuts2)
##    Data: cee04 (Number of observations: 7098) 
##   Draws: 3 chains, each with iter = 66000; warmup = 6000; thin = 6;
##          total post-warmup draws = 30000
## 
## Group-Level Effects: 
## ~nuts2 (Number of levels: 26) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.45      0.07     0.33     0.61 1.00    23688    26929
## sd(sigma_Intercept)     0.06      0.01     0.03     0.09 1.00    26875    28836
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.25      0.09     3.07     3.43 1.00    18573    24591
## sigma_Intercept     0.61      0.01     0.58     0.63 1.00    28549    28171
## 
## Family Specific Parameters: 
##    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu   136.11     46.64    67.74   246.82 1.00    29800    29477
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Trace-Plots

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Trace-Plot

Autokorrelation-Plots

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Autokorrelation-Plot

Posterior-Verteilung

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Posterior-Plot

Metrisches Nullmodell

Modellübersicht

##  Family: student 
##   Links: mu = identity; sigma = log; nu = identity 
## Formula: trust ~ 1 
##          sigma ~ 1
##    Data: cee04 (Number of observations: 7098) 
##   Draws: 3 chains, each with iter = 11500; warmup = 1500; thin = 1;
##          total post-warmup draws = 30000
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.23      0.02     3.19     3.27 1.00    21872    18725
## sigma_Intercept     0.63      0.01     0.61     0.65 1.00    21483    19090
## 
## Family Specific Parameters: 
##    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu   139.20     47.07    69.89   251.65 1.00    20219    19258
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Trace-Plots

Trace-Plot

Autokorrelation-Plots

Autokorrelation-Plot

Posterior-Verteilung

Posterior-Plot




Copyright: Creative Commons License
Benedikt Philipp Kleer, 2022 (Online-Appendix zur Promotion, eingereicht am 14. September 2022, Fachbereich 03, Justus-Liebig-Universität Gießen).